Linguistic modeling with hierarchical systems of weighted linguistic rules

نویسندگان

  • Rafael Alcalá
  • José Ramón Cano
  • Oscar Cordón
  • Francisco Herrera
  • Pedro Villar
  • Igor Zwir
چکیده

Recently, many different possibilities to extend the Linguistic Fuzzy Modeling have been considered in the specialized literature with the aim of introducing a trade-off between accuracy and interpretability. These approaches are not isolated and can be combined among them when they have complementary characteristics, such as the hierarchical linguistic rule learning and the weighted linguistic rule learning. In this paper, we propose the hybridization of both techniques to derive Hierarchical Systems of Weighted Linguistic Rules. To do so, an evolutionary optimization process jointly performing a rule selection and the rule weight derivation has been developed. The proposal has been tested with two real-world problems achieving good results. 2002 Elsevier Science Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linguistic modeling by hierarchical systems of linguistic rules

In this paper, we are going to propose an approach to design linguistic models which are accurate to a high degree and may be suitably interpreted. This approach will be based on the development of a Hierarchical System of Linguistic Rules learning methodology. This methodology has been thought as a refinement of simple linguistic models which, preserving their descriptive power, introduces sma...

متن کامل

Hesitant Fuzzy Linguistic Arithmetic Aggregation Operators in Multiple Attribute Decision Making

In this paper, we investigate the multiple attribute decision making (MADM) problem based on the arithmetic and geometric aggregation operators with hesitant fuzzy linguistic information. Then, motivated by the idea of traditional arithmetic operation, we have developed some aggregation operators for aggregating hesitant fuzzy linguistic information: hesitant fuzzy linguistic weighted average (...

متن کامل

Arithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making

The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...

متن کامل

Linguistic modeling with weighted double-consequent fuzzy rules based on cooperative coevolution

This paper presents an evolutionary learning process for linguistic modeling with weighted double-consequent fuzzy rules. These kinds of fuzzy rules are used to improve the linguistic modeling, with the aim of introducing a trade-off between interpretability and precision. The use of weighted double-consequent fuzzy rules makes more complex the modeling and learning process, increasing the solu...

متن کامل

2-tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making

In this paper, we investigate the multiple attribute decisionmaking (MADM) problems with 2-tuple intuitionistic fuzzylinguistic information. Then, we utilize arithmetic and geometricoperations to develop some 2-tuple intuitionistic fuzzy linguisticaggregation operators. The prominent characteristic of theseproposed operators are studied. Then, we have utilized theseoperators to develop some app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2003